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In this supplementary document, we provide implemen-
tation details of GauSTAR and other baseline methods
in Sec. 1. Then, we demonstrate more experiment results
in Sec. 2 with qualitative comparisons and ablation studies
that further validate our method’s effectiveness. Finally, we
include an extensive discussion of ethics and societal impact
of our approach in Sec. 3.

In the supplementary video, we demonstrate GauSTAR’s
overall pipeline and its performance on various dynamic
scenes. We also provide visual comparisons against base-
line methods.
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1. Implementation Details
1.1. GauSTAR Details

Code releasing. Our code is available at https: //
eth-ait.github.io/GauSTAR/. We provide our
implementation on publicly available datasets, allowing for
reproducibility and further research. However, due to li-
censing restrictions, the data captured for GauSTAR testing
will not be released.
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Running Time. Our method sequentially processes the
video frames. Each frame requires approximately 5 min-
utes of training time on a single NVIDIA RTX 4090 GPU
(running time varies depending on the face number). For
frames where no topology changes are detected, we execute
the pipeline only up to the fixed-topology surface recon-
struction, reducing the processing time to approximately 2
minutes. Once training is complete, rendering is performed
in real time, leveraging CUDA acceleration for core Gaus-
sian splatting operations. A comparison of running times
across different methods, using the same sequence, is pro-
vided in Tab. 1.

Method Training (per frame) Rendering
HumanRF [3] 4.9 min 0.8 fps
Dynamic 3D GS [4] 1.5 min 203 fps
PhysAvatar [7] 1.1 min 218 fps
2DGS [2] 7.1 min 231 fps
GauSTAR (Ours) 4.6 (or 2.1) min 188 fps

Table 1. Runtime comparisons on a single RTX 4090. GauSTAR
requires 2.1 min when no topology changes are detected.

Initial Input for the First Frame. GauSTAR requires a
mesh as input for each frame. For the first frame, we employ
an RGB-D based multi-view reconstruction method [1] to
generate the initial mesh. The reconstructed mesh is then
down-sampled to contain between 100,000 and 200,000
faces, with the exact count varying according to scene com-
plexity. We attach N = 6 Gaussians to each face, result-
ing in approximately 600,000 to 1,200,000 total Gaussians
(note that the number of faces may dynamically change due
to topology updates). The Gaussian appearance parame-
ters for the first frame are initialized using the mesh texture,
while the initial opacity, scale, and rotation parameters are
set to predefined values.

Remeshing Details. As introduced in Sec. 3.5 of the main
paper, after generating new faces, we update the underlying
mesh topology by integrating newly generated faces with
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the original mesh. This process involves removing spe-
cific faces from the original mesh, identifying correspond-
ing newly generated faces, and seamlessly connecting them.

This method begins by identifying original faces where
the unbound weight exceeds a predefined threshold. These
faces are then grouped by their connected components. We
delete any connected components that contain more faces
than a specified threshold. Next, we create a voxel vol-
ume to record the positions of unbound Gaussians from
deleted faces. Within this volume, we identify newly gen-
erated faces and remove isolated faces based on their con-
nected components, preparing them for integration with the
remaining original mesh. The connection process involves
two steps of vertex matching: first, for each vertex z on
the boundary of newly generated faces, we locate its closest
vertex y on the original mesh boundary, set their positions
to y, and merge them; then, for unmatched vertices on the
original mesh boundary, we find their closest vertices on
the new face boundary and perform similar alignment and
merging operations. Finally, we complete the mesh recon-
struction through edge flipping and hole filling operations
to ensure a seamless surface.

1.2. Baseline Details

HumanRF [3]. As the official mesh extraction code for
HumanRF is not publicly available, we implemented our
own version following their paper. While we use March-
ing Cubes for mesh extraction, the raw outputs often con-
tain undesirable internal surfaces, such as those inside the
human body. To address this issue, we additionally gen-
erate outer surfaces using TSDF fusion, then remove any
mesh faces that are far from these TSDF-extracted surfaces.
We also implement light annotations in HumanRF to reduce
light bloom artifacts. We capture a background frame to de-
tect intense light sources and mask the affected image re-
gions. While the light annotations improve the overall qual-
ity, it does not entirely eliminate the artifacts.

Dynamic3DGS [4]. The original Dynamic3DGS paper
primarily focuses on rendering quality rather than geomet-
ric reconstruction. As it does not provide a dedicated sur-
face reconstruction method, we employ TSDF fusion tech-
niques similar to our surface generation approach, combin-
ing depth images from multiple views to obtain the final
mesh. Due to the inherent limitations of Gaussian splatting,
the resulting reconstruction exhibits considerable noise in
the geometry.

2D Gaussian Splatting [2]. 2DGS is designed for recon-
structing static scenes, and we use it to process each frame
independently. For each frame, we initialize the point cloud
using the refined point cloud from [1]. These point clouds

are the ones used for rendering depth inputs from IR cam-
eras. We down-sample each frame’s point cloud to 600,000
points before processing. To enhance geometry consistency,
we incorporate a mask loss similar to our formulation in Eq.
(6) during the training stage. Unlike GauSTAR and other
baselines that leverage temporal information across frames,
2DGS reconstructs each frame independently. As a result,
2DGS is less robust and more prone to overfitting in our
47-view setting, leading to floater artifacts and notable tem-
poral jittering. A similar overfitting trend is also observed in
another experiment, where reducing input views from 200
to 47 on the Mip-NeRF dataset causes the training PSNR to
increase (29.2 to 31.5), while the test PSNR declines (28.7
t0 26.9).

PhysAvatar [7]. While PhysAvatar’s original paper de-
scribes a pipeline beginning with mesh tracking followed by
clothing reconstruction and simulation, it does not explic-
itly mention SMPL-X dependency. However, their released
implementation utilizes SMPL-X for improved tracking ro-
bustness, particularly in hand regions, as confirmed by the
authors. Without SMPL-X initialization, their method re-
lies on inertial estimates for full-body initialization between
frames, similar to Dynamic3DGS.

For a fair comparison across our diverse sequences con-
taining single humans, multiple humans, and non-human
objects, we implement two variants of PhysAvatar: one
using inertial initialization and another additionally using
SMPL-X deformation for human vertices. As the SMPL-
X fitting code was not publicly available at the time of
submission, we adopted the approach from X-Avatar [5]
to fit SMPL-X using multi-view images and reconstructed
meshes. This fitting is done with a multi-stage pipeline: first
extracting 2D keypoints using OpenPose and triangulating
them to 3D with specific filtering for unstable hand predic-
tions. The SMPL-X parameter optimization then proceeds
through three stages: we first initialize the parameters using
the filtered 3D keypoints, then refine body pose and shape
parameters using the scan geometry, and finally optimize
hand poses and facial expressions using 3D landmarks.

2. Additional Experiments
2.1. Additional comparisons with Baselines

We provide additional qualitative comparisons with Hu-
manRF [3], Dynamic 3D Gaussians [4], PhysAvatar [7], and
2D Gaussian Splatting [2] in Fig. 1.

HumanRF trains each video segment independently.
This approach leads to slow rendering times and inconsis-
tent tracking. Due to its independent segment training, Hu-
manRF struggles with strong occlusions where most cam-
eras cannot observe certain regions (Fig. 4 in the main pa-
per). In contrast, our method demonstrates greater robust-
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Ground Truth HumanRF Dynamic 3D Gaussians PhysAvatar 2D Gaussian Splatting ~ GauSTAR (Ours)

Figure 1. Comparisons of appearance and geometry reconstruction. HumanRF offers overall good visual quality but lacks tracking capabil-
ities. Dynamic 3D Gaussians produces blurry renderings and noisy surfaces. PhysAvatar struggles with handling topology changes, while
2D Gaussian Splatting faces challenges with both tracking and floating artifacts. In contrast, GauSTAR delivers high-quality reconstruction
and effectively manages topology changes.

ness to occlusion through consistent tracking and scene flow with some frames showing impressive results while others
warping. exhibit notable artifacts. Furthermore, as a single-frame
method, it produces temporally unstable reconstructions
2DGS is a static scene reconstruction method, and we and does not provide tracking capabilities.
use it to process frames independently for reconstruct-
ing dynamic surfaces. However, its reconstruction qual- Dynamic3DGS employs inertial estimation to initialize
ity varies significantly across frames due to overfitting, Gaussians for subsequent frames. While it supports track-
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Figure 2. Qualitative results for ablation study. Unbinding and re-meshing are crucial for handling topology changes, and scene flow
ensures robust tracking of large movements. Our method without IR input yields a similar quality to the full version of our method but

needs additional data prepossessing.

ing, the geometric quality is limited. Moreover, without an
underlying mesh constraint, Gaussians can move freely in
space, resulting in inconsistent tracking.

PhysAvatar maintains consistent mesh tracking and
achieves high-quality reconstruction for clothed humans
under normal motions. However, its fixed-topology as-
sumption fundamentally limits its ability to handle dynamic
scenes where topology changes occur. In such cases, it fails
dramatically when encountering topology changes due to its

inability to handle such modifications.
2.2. Qualitative Results for Ablations

We illustrate the impact of our key components through
qualitative comparisons in Fig. 2. Without the unbinding
and re-meshing components, our method fails to properly
handle topology changes, resulting in incorrectly merged
geometries between the human head and hood in the first
two rows, and erroneous connections between the separate
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Figure 3. Scene flow warping ablation. We capture a sequence
at 60 FPS and down-sample it to 30 FPS, 15 FPS, and 10 FPS,
increasing motion between frames. Our method consistently per-
forms well across frame rates, while the method without scene
flow shows higher errors as the motion between frames increases.

Method PSNR{ CDJ] 3DATE]

4DGS [6] 2726  1.229 10.11
GauSTAR (Ours)  31.87  0.237 0.452

Table 2. Additional quantitative comparison with 4DGS [6] using
multi-view stage data. CD and 3D ATE are in cm. The settings
match those in Tab. 1 in the main paper.

boxes. The scene flow warping initialization proves crucial
as well; without it, Gaussians become trapped in local min-
ima and cannot properly redistribute, leading to significant
geometric artifacts.

2.3. Additional Scene Flow Ablation

To demonstrate the effectiveness of our scene flow warp-
ing in handling large motions, we additionally evaluate re-
construction quality under varying degrees of inter-frame
movement. We conduct this experiment by capturing a se-
quence at 60 FPS and systematically down-sampling it to 30
FPS, 15 FPS, and 10 FPS, effectively increasing the mag-
nitude of motion between consecutive frames. Comparing
our full method against a variant without scene flow warp-
ing reveals that our approach maintains consistent recon-
struction quality across all frame rates, while the ablated
version shows progressively deteriorating performance as
inter-frame motion increases.

2.4. Comparisons with 4DGS

4D Gaussian Splitting (4DGS) [6] is designed to handle dy-
namic scenes with a focus on novel view synthesis from
monocular input video. While it supports dynamic recon-
struction from multi-view inputs, its paper does not demon-
strate any reconstructions using stage data. As a result, we

Ground Truth 4DGS

GauSTAR (Ours)

Figure 4. Additional qualitative comparison with 4DGS [6]. Un-
like GauSTAR and other baselines in Sec. 2.1, 4DGS does not
focus on reconstruction using multi-view stage data, resulting in
suboptimal performance in both rendering quality and surface re-
construction.

did not include a comparison with 4DGS in our main paper
or in Sec. 2.1, as our findings indicate that 4DGS performs
suboptimally in stage settings (see Tab. 2 and Fig. 4). For
surface reconstruction comparisons, since 4DGS does not
inherently support surface reconstruction, we extract per-
frame meshes using TSDF fusion [2]. The settings are con-
sistent with those in Fig. 4 and Tab. 1 of the main paper.

2.5. GauSTAR with RGB input

Our method does not necessarily require the IR depth in-
put. For example, we can use multiview stereo to create a
rough depth map. Here we use rendered depth from Hu-
manRF for its robustness and smoothness, which has fewer
artifacts. As shown in the last two columns of Fig. 2, GauS-
TAR works almost equally well compared to the version
with depth input. This means GauSTAR can be utilized for
capture setup with RGB input only.

2.6. Failure Cases

We present failure cases in Fig. 5, highlighting the chal-
lenges faced by our method. In particular, transparent and
specular surfaces remain difficult for most surface recon-
struction techniques, including Gaussian Splatting, due to
their complex light interactions and lack of reliable depth
cues. Accurately reconstructing such surfaces requires
more advanced strategies, which we leave as future works.
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Figure 5. GauSTAR failure cases on transparent and specular sur-
faces due to complex light interactions and lack of depth inputs.

3. Ethics and Societal Impact Discussion

Our data collection procedure has been reviewed and ap-
proved by the responsible Institutional Review Board. All
subjects voluntarily participated in the data collection pro-
cess and were fully informed about the intended use of the
data in research.

GauSTAR enables the digitization of general dynamic
scenes from multi-view captures, which has broad appli-
cations in visual effects, robotics, and virtual production.
As our method can reconstruct and track detailed surface
changes, there are potential concerns about privacy and
surveillance when applied to scenes involving human ac-
tivities. Such concerns must be addressed before deploying
this technology in commercial products. Our goal with this
work is to enable beneficial applications such as human-
robot interaction, markerless motion analysis, and immer-
sive telepresence. Our system represents a technical ad-
vancement in computer vision that can benefit numerous
fields from industrial automation to cultural preservation.
While we cannot prevent potential misuse of such technol-
ogy, we believe in transparent research practices, including
detailed technical discussions and code release. This open-
ness allows the research community to better understand
both the capabilities and limitations of such systems, and
to develop appropriate safeguards against concerning appli-
cations.
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